
The Quantum Metropolis Algorithm
An implementation of Metropolis’ famous algorithm

on a quantum computer.

Robert Rüger

Institut für Theoretische Physik
Goethe-Universität Frankfurt

July 13th, 2011

Contents

1 The Classical Metropolis Algorithm
... its origins
... a very quick derivation
... an example: 2d Ising-Model

2 The Basics of Quantum Computing
... bits and qubits
... registers and quantum registers

3 The Quantum Metropolis Algorithm
... what is it?
... the implementation

Contents

1 The Classical Metropolis Algorithm
... its origins
... a very quick derivation
... an example: 2d Ising-Model

2 The Basics of Quantum Computing
... bits and qubits
... registers and quantum registers

3 The Quantum Metropolis Algorithm
... what is it?
... the implementation

The Classical Metropolis Algorithm
... its origins

Exact calculation of expectation values in thermal equilibrium

〈O〉 =
∫
dΓ O(Γ) e−β H(Γ)∫

dΓ e−β H(Γ)
discretization−−−−−−−−→

∑
µ O(µ) e−β H(µ)∑

µ e−β H(µ)

Problem: Exact evaluation is numerically so absurdly laborious,
that it is applicable only for the smallest systems!

Example: A system of 100 two-state particles has 2100

different states. The fastest computers do about
1016 simple operations per second.

2100

1016s−1 = 1.27 · 1014s = 4 million years!

The Classical Metropolis Algorithm
... its origins

Exact calculation of expectation values in thermal equilibrium

〈O〉 =
∫
dΓ O(Γ) e−β H(Γ)∫

dΓ e−β H(Γ)
discretization−−−−−−−−→

∑
µ O(µ) e−β H(µ)∑

µ e−β H(µ)

Problem: Exact evaluation is numerically so absurdly laborious,
that it is applicable only for the smallest systems!

Example: A system of 100 two-state particles has 2100

different states. The fastest computers do about
1016 simple operations per second.

2100

1016s−1 = 1.27 · 1014s = 4 million years!

The Classical Metropolis Algorithm
... its origins

Exact calculation of expectation values in thermal equilibrium

〈O〉 =
∫
dΓ O(Γ) e−β H(Γ)∫

dΓ e−β H(Γ)
discretization−−−−−−−−→

∑
µ O(µ) e−β H(µ)∑

µ e−β H(µ)

Problem: Exact evaluation is numerically so absurdly laborious,
that it is applicable only for the smallest systems!

Example: A system of 100 two-state particles has 2100

different states. The fastest computers do about
1016 simple operations per second.

2100

1016s−1 = 1.27 · 1014s = 4 million years!

The Classical Metropolis Algorithm
... its origins

Simple Sampling Monte Carlo

〈O〉 ≈ 〈O〉ss =
∑µN

µi=1 O(µi) e−β H(µi)∑µN
µi=1 e−β H(µi)

Problem: A lot of computer time is wasted sampling states
that don’t add significantly to the sum.

Example: Think of a system at very low temperature, where
only a few states near the ground-state contribute
to the sums and all the others are exponentially
surpressed.

The Classical Metropolis Algorithm
... its origins

Simple Sampling Monte Carlo

〈O〉 ≈ 〈O〉ss =
∑µN

µi=1 O(µi) e−β H(µi)∑µN
µi=1 e−β H(µi)

Problem: A lot of computer time is wasted sampling states
that don’t add significantly to the sum.

Example: Think of a system at very low temperature, where
only a few states near the ground-state contribute
to the sums and all the others are exponentially
surpressed.

The Classical Metropolis Algorithm
... its origins

Simple Sampling Monte Carlo

〈O〉 ≈ 〈O〉ss =
∑µN

µi=1 O(µi) e−β H(µi)∑µN
µi=1 e−β H(µi)

Problem: A lot of computer time is wasted sampling states
that don’t add significantly to the sum.

Example: Think of a system at very low temperature, where
only a few states near the ground-state contribute
to the sums and all the others are exponentially
surpressed.

The Classical Metropolis Algorithm
... its origins

“Instead of choosing configurations randomly, then
weighting them with exp(−E/kT), we choose
configurations with a probability exp(−E/kT) and
weight them evenly.” — Metropolis et al.

Importance Sampling Monte Carlo

〈O〉 ≈ 〈O〉is = 1
N

µ
(ρ)
N∑

µ
(ρ)
i=1

O
(
µ

(ρ)
i

)
with ρ = 1

Z e−β H
(

µ
(ρ)
i

)

Note: This is exactly like an experimental measurement, with
the exception that we have to generate the states ourselves, while
nature does it for the experimental physicist.

The Classical Metropolis Algorithm
... its origins

“Instead of choosing configurations randomly, then
weighting them with exp(−E/kT), we choose
configurations with a probability exp(−E/kT) and
weight them evenly.” — Metropolis et al.

Importance Sampling Monte Carlo

〈O〉 ≈ 〈O〉is = 1
N

µ
(ρ)
N∑

µ
(ρ)
i=1

O
(
µ

(ρ)
i

)
with ρ = 1

Z e−β H
(

µ
(ρ)
i

)

Note: This is exactly like an experimental measurement, with
the exception that we have to generate the states ourselves, while
nature does it for the experimental physicist.

The Classical Metropolis Algorithm
... its origins

“Instead of choosing configurations randomly, then
weighting them with exp(−E/kT), we choose
configurations with a probability exp(−E/kT) and
weight them evenly.” — Metropolis et al.

Importance Sampling Monte Carlo

〈O〉 ≈ 〈O〉is = 1
N

µ
(ρ)
N∑

µ
(ρ)
i=1

O
(
µ

(ρ)
i

)
with ρ = 1

Z e−β H
(

µ
(ρ)
i

)

Note: This is exactly like an experimental measurement, with
the exception that we have to generate the states ourselves, while
nature does it for the experimental physicist.

The Classical Metropolis Algorithm
... a very quick derivation

Problem
It it is not trivial to generate states that follow the Boltzmann
distribution!

Idea

1 Find one of the “important states”.
2 Modify it a litte bit to get another important state.

Goal
Build a Markov process whose Markov chain contains Boltzmann
distributed states.

The Classical Metropolis Algorithm
... a very quick derivation

Problem
It it is not trivial to generate states that follow the Boltzmann
distribution!

Idea

1 Find one of the “important states”.
2 Modify it a litte bit to get another important state.

Goal
Build a Markov process whose Markov chain contains Boltzmann
distributed states.

The Classical Metropolis Algorithm
... a very quick derivation

Problem
It it is not trivial to generate states that follow the Boltzmann
distribution!

Idea

1 Find one of the “important states”.
2 Modify it a litte bit to get another important state.

Goal
Build a Markov process whose Markov chain contains Boltzmann
distributed states.

The Classical Metropolis Algorithm
... a very quick derivation

Master Equation
Look at the probability Pk(µ) of the system to be in the state µ
after k Markov steps.

Pk+1(µ) = Pk(µ) +
∑

ν

(
Pk(ν)T (ν → µ)− Pk(µ)T (µ→ ν)

)

Detailed Balance
In the end, we want Pk(µ) to be the states Boltzmann
probability for all steps k. This implies Pk+1(µ) = Pk(µ).

⇒ Pk(ν)T (ν → µ) = Pk(µ)T (µ→ ν)

The Classical Metropolis Algorithm
... a very quick derivation

Master Equation
Look at the probability Pk(µ) of the system to be in the state µ
after k Markov steps.

Pk+1(µ) = Pk(µ) +
∑

ν

(
Pk(ν)T (ν → µ)− Pk(µ)T (µ→ ν)

)

Detailed Balance
In the end, we want Pk(µ) to be the states Boltzmann
probability for all steps k. This implies Pk+1(µ) = Pk(µ).

⇒ Pk(ν)T (ν → µ) = Pk(µ)T (µ→ ν)

The Classical Metropolis Algorithm
... a very quick derivation

Transition probabilities
Detailed balance gives the required transition probabilities.

T (µ→ ν)
T (ν → µ) = P(ν)

P(µ) = Z−1 e−β H(ν)

Z−1 e−β H(µ) = e−β
(

H(ν)−H(µ)
)

Two step Markov process

T (µ→ ν)
T (ν → µ) = S(µ→ ν)

S(ν → µ)
A(µ→ ν)
A(ν → µ) = e−β

(
H(ν)−H(µ)

)
Where S(µ→ ν) is the probability that a transition is suggested
and A(µ→ ν) is its probability to be accepted.

The Classical Metropolis Algorithm
... a very quick derivation

Transition probabilities
Detailed balance gives the required transition probabilities.

T (µ→ ν)
T (ν → µ) = P(ν)

P(µ) = Z−1 e−β H(ν)

Z−1 e−β H(µ) = e−β
(

H(ν)−H(µ)
)

Two step Markov process

T (µ→ ν)
T (ν → µ) = S(µ→ ν)

S(ν → µ)
A(µ→ ν)
A(ν → µ) = e−β

(
H(ν)−H(µ)

)
Where S(µ→ ν) is the probability that a transition is suggested
and A(µ→ ν) is its probability to be accepted.

The Classical Metropolis Algorithm
... a very quick derivation

Choice of S(µ→ ν) and A(µ→ ν)

Choose S(µ→ ν) = S(ν → µ) equal in both directions.

⇒ A(µ→ ν)
A(ν → µ) = e−β

(
H(ν)−H(µ)

)
Choose the largest acceptance probabilities that still satisfy the
equation.

A(µ→ ν) = min
(
1, e−β

(
H(ν)−H(µ)

))

This particular choice of S and A defines
the Metropolis Algorithm!

The Classical Metropolis Algorithm
... a very quick derivation

Choice of S(µ→ ν) and A(µ→ ν)

Choose S(µ→ ν) = S(ν → µ) equal in both directions.

⇒ A(µ→ ν)
A(ν → µ) = e−β

(
H(ν)−H(µ)

)
Choose the largest acceptance probabilities that still satisfy the
equation.

A(µ→ ν) = min
(
1, e−β

(
H(ν)−H(µ)

))

This particular choice of S and A defines
the Metropolis Algorithm!

The Classical Metropolis Algorithm
... a very quick derivation

Choice of S(µ→ ν) and A(µ→ ν)

Choose S(µ→ ν) = S(ν → µ) equal in both directions.

⇒ A(µ→ ν)
A(ν → µ) = e−β

(
H(ν)−H(µ)

)
Choose the largest acceptance probabilities that still satisfy the
equation.

A(µ→ ν) = min
(
1, e−β

(
H(ν)−H(µ)

))

This particular choice of S and A defines
the Metropolis Algorithm!

The Classical Metropolis Algorithm
... an example: 2d Ising-Model

The Ising-Model Hamiltonian

H = −J
∑
〈ij〉

SiSj − B
∑

i
Si

Implementation of the Metropolis Algorithm

1 Start in an arbitrary state.
2 E.g.: Randomly select a single spin to flip.
3 Calculate the resulting energy difference ∆E .
4 Flip it with probability min

(
1, e−β ∆E

)
.

5 Return to 2.

(... show the video of the algorithm at work ...)

The Classical Metropolis Algorithm
... an example: 2d Ising-Model

The Ising-Model Hamiltonian

H = −J
∑
〈ij〉

SiSj − B
∑

i
Si

Implementation of the Metropolis Algorithm

1 Start in an arbitrary state.
2 E.g.: Randomly select a single spin to flip.
3 Calculate the resulting energy difference ∆E .
4 Flip it with probability min

(
1, e−β ∆E

)
.

5 Return to 2.

(... show the video of the algorithm at work ...)

The Classical Metropolis Algorithm
... an example: 2d Ising-Model

The Ising-Model Hamiltonian

H = −J
∑
〈ij〉

SiSj − B
∑

i
Si

Implementation of the Metropolis Algorithm

1 Start in an arbitrary state.
2 E.g.: Randomly select a single spin to flip.
3 Calculate the resulting energy difference ∆E .
4 Flip it with probability min

(
1, e−β ∆E

)
.

5 Return to 2.

(... show the video of the algorithm at work ...)

The Classical Metropolis Algorithm
... an example: 2d Ising-Model

The Ising-Model Hamiltonian

H = −J
∑
〈ij〉

SiSj − B
∑

i
Si

Implementation of the Metropolis Algorithm

1 Start in an arbitrary state.
2 E.g.: Randomly select a single spin to flip.
3 Calculate the resulting energy difference ∆E .
4 Flip it with probability min

(
1, e−β ∆E

)
.

5 Return to 2.

(... show the video of the algorithm at work ...)

The Classical Metropolis Algorithm
... an example: 2d Ising-Model

The Ising-Model Hamiltonian

H = −J
∑
〈ij〉

SiSj − B
∑

i
Si

Implementation of the Metropolis Algorithm

1 Start in an arbitrary state.
2 E.g.: Randomly select a single spin to flip.
3 Calculate the resulting energy difference ∆E .
4 Flip it with probability min

(
1, e−β ∆E

)
.

5 Return to 2.

(... show the video of the algorithm at work ...)

The Classical Metropolis Algorithm
... an example: 2d Ising-Model

The Ising-Model Hamiltonian

H = −J
∑
〈ij〉

SiSj − B
∑

i
Si

Implementation of the Metropolis Algorithm

1 Start in an arbitrary state.
2 E.g.: Randomly select a single spin to flip.
3 Calculate the resulting energy difference ∆E .
4 Flip it with probability min

(
1, e−β ∆E

)
.

5 Return to 2.

(... show the video of the algorithm at work ...)

The Classical Metropolis Algorithm
... an example: 2d Ising-Model

The Ising-Model Hamiltonian

H = −J
∑
〈ij〉

SiSj − B
∑

i
Si

Implementation of the Metropolis Algorithm

1 Start in an arbitrary state.
2 E.g.: Randomly select a single spin to flip.
3 Calculate the resulting energy difference ∆E .
4 Flip it with probability min

(
1, e−β ∆E

)
.

5 Return to 2.

(... show the video of the algorithm at work ...)

Contents

1 The Classical Metropolis Algorithm
... its origins
... a very quick derivation
... an example: 2d Ising-Model

2 The Basics of Quantum Computing
... bits and qubits
... registers and quantum registers

3 The Quantum Metropolis Algorithm
... what is it?
... the implementation

The Basics of Quantum Computing
... bits and qubits

Classical Bit

bit = binary digit or basic indissoluble information unit
basic unit for measuring information
has the two states 0 and 1

Quantum Bit

qubit = quantum bit
basic unit of quantum information
state in a two dimensional Hilbert space

|ψ〉 = c0 |0〉+ c1 |1〉 with |c0|2 + |c1|2 = 1

|0〉 and |1〉 are called the computational basis

The Basics of Quantum Computing
... bits and qubits

Classical Bit

bit = binary digit or basic indissoluble information unit
basic unit for measuring information
has the two states 0 and 1

Quantum Bit

qubit = quantum bit
basic unit of quantum information
state in a two dimensional Hilbert space

|ψ〉 = c0 |0〉+ c1 |1〉 with |c0|2 + |c1|2 = 1

|0〉 and |1〉 are called the computational basis

The Basics of Quantum Computing
... registers and quantum registers

Registers

a collection of N classical bits, e.g.
(
01101010

)
has 2N different states

Quantum Registers

a tensor product of N qubits, e.g. |φ〉 = |ψ〉1 ⊗ |ψ〉2
state in a 2N dimensional Hilbert space, e.g.

|φ〉 = c00 |00〉+ c01 |01〉+ c10 |10〉+ c11 |11〉
with |c00|2 + |c01|2 + |c10|2 + |c11|2 = 1

The Basics of Quantum Computing
... registers and quantum registers

Registers

a collection of N classical bits, e.g.
(
01101010

)
has 2N different states

Quantum Registers

a tensor product of N qubits, e.g. |φ〉 = |ψ〉1 ⊗ |ψ〉2
state in a 2N dimensional Hilbert space, e.g.

|φ〉 = c00 |00〉+ c01 |01〉+ c10 |10〉+ c11 |11〉
with |c00|2 + |c01|2 + |c10|2 + |c11|2 = 1

Contents

1 The Classical Metropolis Algorithm
... its origins
... a very quick derivation
... an example: 2d Ising-Model

2 The Basics of Quantum Computing
... bits and qubits
... registers and quantum registers

3 The Quantum Metropolis Algorithm
... what is it?
... the implementation

The Quantum Metropolis Algorithm
... what is it?

Goal
We want a quantum computer to sample the energy
eigenstates |ψi〉 of a given Hamiltonian according to the
Boltzmann distribution.

Straightforward translation into quantum mechanics

1 Start in a random energy eigenstate |ψi〉 with energy Ei .
2 Suggest a nearby energy eigenstate |ψj〉 with energy Ej .
3 Calculate their energy difference ∆E = Ej − Ei .

4 Go to |ψj〉 with probability min
(
1, e−β ∆E

)
.

5 Return to 2.

... unfortunately there are some problems with this ...

The Quantum Metropolis Algorithm
... what is it?

Goal
We want a quantum computer to sample the energy
eigenstates |ψi〉 of a given Hamiltonian according to the
Boltzmann distribution.

Straightforward translation into quantum mechanics

1 Start in a random energy eigenstate |ψi〉 with energy Ei .
2 Suggest a nearby energy eigenstate |ψj〉 with energy Ej .
3 Calculate their energy difference ∆E = Ej − Ei .

4 Go to |ψj〉 with probability min
(
1, e−β ∆E

)
.

5 Return to 2.

... unfortunately there are some problems with this ...

The Quantum Metropolis Algorithm
... what is it?

Goal
We want a quantum computer to sample the energy
eigenstates |ψi〉 of a given Hamiltonian according to the
Boltzmann distribution.

Straightforward translation into quantum mechanics

1 Start in a random energy eigenstate |ψi〉 with energy Ei .
2 Suggest a nearby energy eigenstate |ψj〉 with energy Ej .
3 Calculate their energy difference ∆E = Ej − Ei .

4 Go to |ψj〉 with probability min
(
1, e−β ∆E

)
.

5 Return to 2.

... unfortunately there are some problems with this ...

The Quantum Metropolis Algorithm
... what is it?

Goal
We want a quantum computer to sample the energy
eigenstates |ψi〉 of a given Hamiltonian according to the
Boltzmann distribution.

Straightforward translation into quantum mechanics

1 Start in a random energy eigenstate |ψi〉 with energy Ei .
2 Suggest a nearby energy eigenstate |ψj〉 with energy Ej .
3 Calculate their energy difference ∆E = Ej − Ei .

4 Go to |ψj〉 with probability min
(
1, e−β ∆E

)
.

5 Return to 2.

... unfortunately there are some problems with this ...

The Quantum Metropolis Algorithm
... what is it?

Goal
We want a quantum computer to sample the energy
eigenstates |ψi〉 of a given Hamiltonian according to the
Boltzmann distribution.

Straightforward translation into quantum mechanics

1 Start in a random energy eigenstate |ψi〉 with energy Ei .
2 Suggest a nearby energy eigenstate |ψj〉 with energy Ej .
3 Calculate their energy difference ∆E = Ej − Ei .

4 Go to |ψj〉 with probability min
(
1, e−β ∆E

)
.

5 Return to 2.

... unfortunately there are some problems with this ...

The Quantum Metropolis Algorithm
... what is it?

Goal
We want a quantum computer to sample the energy
eigenstates |ψi〉 of a given Hamiltonian according to the
Boltzmann distribution.

Straightforward translation into quantum mechanics

1 Start in a random energy eigenstate |ψi〉 with energy Ei .
2 Suggest a nearby energy eigenstate |ψj〉 with energy Ej .
3 Calculate their energy difference ∆E = Ej − Ei .

4 Go to |ψj〉 with probability min
(
1, e−β ∆E

)
.

5 Return to 2.

... unfortunately there are some problems with this ...

The Quantum Metropolis Algorithm
... what is it?

Goal
We want a quantum computer to sample the energy
eigenstates |ψi〉 of a given Hamiltonian according to the
Boltzmann distribution.

Straightforward translation into quantum mechanics

1 Start in a random energy eigenstate |ψi〉 with energy Ei .
2 Suggest a nearby energy eigenstate |ψj〉 with energy Ej .
3 Calculate their energy difference ∆E = Ej − Ei .

4 Go to |ψj〉 with probability min
(
1, e−β ∆E

)
.

5 Return to 2.

... unfortunately there are some problems with this ...

The Quantum Metropolis Algorithm
... what is it?

Goal
We want a quantum computer to sample the energy
eigenstates |ψi〉 of a given Hamiltonian according to the
Boltzmann distribution.

Straightforward translation into quantum mechanics

1 Start in a random energy eigenstate |ψi〉 with energy Ei .
2 Suggest a nearby energy eigenstate |ψj〉 with energy Ej .
3 Calculate their energy difference ∆E = Ej − Ei .

4 Go to |ψj〉 with probability min
(
1, e−β ∆E

)
.

5 Return to 2.

... unfortunately there are some problems with this ...

The Quantum Metropolis Algorithm
... the implementation

Quantum Phase Estimation Algorithm
Attaches the binary representation of the states energy as a
quantum register.∑

i
ci |ψi〉 7−→

∑
i
ci |ψi〉 ⊗ |Ei〉

Reading of the energy register collapses the state to the
corresponding energy eigenstate.

This has two applications:
1 Preparing a random energy eigenstate.
2 Measuring the energy of a given energy eigenstate.

The Quantum Metropolis Algorithm
... the implementation

Quantum Phase Estimation Algorithm
Attaches the binary representation of the states energy as a
quantum register.∑

i
ci |ψi〉 7−→

∑
i
ci |ψi〉 ⊗ |Ei〉

Reading of the energy register collapses the state to the
corresponding energy eigenstate.

This has two applications:
1 Preparing a random energy eigenstate.
2 Measuring the energy of a given energy eigenstate.

The Quantum Metropolis Algorithm
... the implementation

Quantum Phase Estimation Algorithm
Attaches the binary representation of the states energy as a
quantum register.∑

i
ci |ψi〉 7−→

∑
i
ci |ψi〉 ⊗ |Ei〉

Reading of the energy register collapses the state to the
corresponding energy eigenstate.

This has two applications:
1 Preparing a random energy eigenstate.
2 Measuring the energy of a given energy eigenstate.

The Quantum Metropolis Algorithm
... the implementation

Quantum Phase Estimation Algorithm
Attaches the binary representation of the states energy as a
quantum register.∑

i
ci |ψi〉 7−→

∑
i
ci |ψi〉 ⊗ |Ei〉

Reading of the energy register collapses the state to the
corresponding energy eigenstate.

This has two applications:
1 Preparing a random energy eigenstate.
2 Measuring the energy of a given energy eigenstate.

The Quantum Metropolis Algorithm
... the implementation

There is no way to go from one eigenstate to the other directly!

Generation of new eigenstates
Apply a random local unitary transformation C .

C : |ψi〉 7−→
∑

j
cj |ψj〉 where Ej ≈ Ei

Next step? Use QPE to collapse to a new eigenstate |ψj〉 and
learn its energy Ej?∑

j
cj |ψj〉 7−→

∑
j
cj |ψj〉 ⊗ |Ej〉 7−→ |ψj〉 ⊗ |Ej〉

The Quantum Metropolis Algorithm
... the implementation

There is no way to go from one eigenstate to the other directly!

Generation of new eigenstates
Apply a random local unitary transformation C .

C : |ψi〉 7−→
∑

j
cj |ψj〉 where Ej ≈ Ei

Next step? Use QPE to collapse to a new eigenstate |ψj〉 and
learn its energy Ej?∑

j
cj |ψj〉 7−→

∑
j
cj |ψj〉 ⊗ |Ej〉 7−→ |ψj〉 ⊗ |Ej〉

The Quantum Metropolis Algorithm
... the implementation

There is no way to go from one eigenstate to the other directly!

Generation of new eigenstates
Apply a random local unitary transformation C .

C : |ψi〉 7−→
∑

j
cj |ψj〉 where Ej ≈ Ei

Next step? Use QPE to collapse to a new eigenstate |ψj〉 and
learn its energy Ej?∑

j
cj |ψj〉 7−→

∑
j
cj |ψj〉 ⊗ |Ej〉 7−→ |ψj〉 ⊗ |Ej〉

The Quantum Metropolis Algorithm
... the implementation

Measuring Ej irreversibly collapses into state |ψj〉!
How would we go back to |ψi〉 if we reject the move?

A less destructive measurement
Idea: An energy measurement reveals more information than we
actually need! One bit (accept/reject) would be enough ...∑

j
cj |ψj〉⊗|Ej〉 7−→

∑
j
cj |ψj〉⊗|Ej〉⊗

(√wij |1〉+
√
1− wij |0〉

)
If we measure the last qubit, only one bit of information is
revealed and less damage is done to the state.

Better chance to undo it!

The Quantum Metropolis Algorithm
... the implementation

Measuring Ej irreversibly collapses into state |ψj〉!
How would we go back to |ψi〉 if we reject the move?

A less destructive measurement
Idea: An energy measurement reveals more information than we
actually need! One bit (accept/reject) would be enough ...∑

j
cj |ψj〉⊗|Ej〉 7−→

∑
j
cj |ψj〉⊗|Ej〉⊗

(√wij |1〉+
√
1− wij |0〉

)
If we measure the last qubit, only one bit of information is
revealed and less damage is done to the state.

Better chance to undo it!

The Quantum Metropolis Algorithm
... the implementation

Measuring Ej irreversibly collapses into state |ψj〉!
How would we go back to |ψi〉 if we reject the move?

A less destructive measurement
Idea: An energy measurement reveals more information than we
actually need! One bit (accept/reject) would be enough ...∑

j
cj |ψj〉⊗|Ej〉 7−→

∑
j
cj |ψj〉⊗|Ej〉⊗

(√wij |1〉+
√
1− wij |0〉

)
If we measure the last qubit, only one bit of information is
revealed and less damage is done to the state.

Better chance to undo it!

The Quantum Metropolis Algorithm
... the implementation

Two different binary measurements
We can use QPE to determine if we are back in state |ψi〉.
Formally, we can define a projector on |ψi〉.

P = 1 |ψi〉 〈ψi |+ 0 |ψ⊥i 〉 〈ψ⊥i | = |ψi〉 〈ψi |

Use accept/reject as another binary measurement.

Q‖ = 1 |1〉 〈1|+ 0 |0〉 〈0| = |1〉 〈1|
Q⊥ = 0 |1〉 〈1|+ 1 |0〉 〈0| = |0〉 〈0|

⇒ Q = Q‖ + Q⊥ = 1

The Quantum Metropolis Algorithm
... the implementation

Two different binary measurements
We can use QPE to determine if we are back in state |ψi〉.
Formally, we can define a projector on |ψi〉.

P = 1 |ψi〉 〈ψi |+ 0 |ψ⊥i 〉 〈ψ⊥i | = |ψi〉 〈ψi |

Use accept/reject as another binary measurement.

Q‖ = 1 |1〉 〈1|+ 0 |0〉 〈0| = |1〉 〈1|
Q⊥ = 0 |1〉 〈1|+ 1 |0〉 〈0| = |0〉 〈0|

⇒ Q = Q‖ + Q⊥ = 1

The Quantum Metropolis Algorithm
... the implementation

Damage to the system’s state
A measurement of the accept/reject qubit also has an effect on
the first qubit register, that holds the system’s state.

∑
j
cj |ψj〉

Q‖
−−→

{
|φ‖Q〉 if accepted
|φ⊥Q〉 if rejected

We can express the initial state |ψi〉 as a superposition of the
states |φ⊥Q〉 and |φ

‖
Q〉.

|ψi〉 =
(
Q‖ + Q⊥

)
|ψi〉 = √q|φ‖Q〉+

√
1− q|φ⊥Q〉

The Quantum Metropolis Algorithm
... the implementation

Q‖ measurement

|ψi〉 = √q|φ‖Q〉+
√
1− q|φ⊥Q〉

|ψ⊥i 〉 =
√
1− q|φ‖Q〉 −

√q|φ⊥Q〉

P measurement

|φ‖Q〉 = √q |ψi〉+
√
1− q|ψ⊥i 〉

|φ⊥Q〉 =
√
1− q |ψi〉 −

√q|ψ⊥i 〉

Iteration of P Q‖ measurements

Probability never to hit |ψi〉 goes down exponentially with the
number of iterations.

The Quantum Metropolis Algorithm
... the implementation

Quantum Metropolis Algorithm (1/3)

1 Measure the energy of an arbitrary initial state using QPE
to prepare a random energy eigenstate |ψi〉.

|ψ〉 =
∑

i
ci |ψi〉 7−→

∑
i
ci |ψi〉 ⊗ |Ei〉 7−→ |ψi〉

2 Apply a random local unitary transformation.

|ψi〉 7−→
∑

j
cj |ψj〉 where Ej ≈ Ei

The Quantum Metropolis Algorithm
... the implementation

Quantum Metropolis Algorithm (1/3)

1 Measure the energy of an arbitrary initial state using QPE
to prepare a random energy eigenstate |ψi〉.

|ψ〉 =
∑

i
ci |ψi〉 7−→

∑
i
ci |ψi〉 ⊗ |Ei〉 7−→ |ψi〉

2 Apply a random local unitary transformation.

|ψi〉 7−→
∑

j
cj |ψj〉 where Ej ≈ Ei

The Quantum Metropolis Algorithm
... the implementation

Quantum Metropolis Algorithm (2/3)

3 Attach the energy register |Ej〉 using QPE and attach the
accept/reject qubit.∑

j
cj |ψj〉 7−→

∑
j
cj |ψj〉 ⊗ |Ej〉 ⊗

(√wij |1〉+
√
1− wij |0〉

)

4 Measure the accept/reject qubit.
Accepted! Use QPE to collapse to a new eigenstate |ψj〉 and
learn its energy.
Rejected! Continue to step 5.

The Quantum Metropolis Algorithm
... the implementation

Quantum Metropolis Algorithm (2/3)

3 Attach the energy register |Ej〉 using QPE and attach the
accept/reject qubit.∑

j
cj |ψj〉 7−→

∑
j
cj |ψj〉 ⊗ |Ej〉 ⊗

(√wij |1〉+
√
1− wij |0〉

)

4 Measure the accept/reject qubit.
Accepted! Use QPE to collapse to a new eigenstate |ψj〉 and
learn its energy.
Rejected! Continue to step 5.

The Quantum Metropolis Algorithm
... the implementation

Quantum Metropolis Algorithm (2/3)

3 Attach the energy register |Ej〉 using QPE and attach the
accept/reject qubit.∑

j
cj |ψj〉 7−→

∑
j
cj |ψj〉 ⊗ |Ej〉 ⊗

(√wij |1〉+
√
1− wij |0〉

)

4 Measure the accept/reject qubit.
Accepted! Use QPE to collapse to a new eigenstate |ψj〉 and
learn its energy.
Rejected! Continue to step 5.

The Quantum Metropolis Algorithm
... the implementation

Quantum Metropolis Algorithm (3/3)

5 Being in state |φ⊥Q〉 we iterate the P Q‖ measurements in a
two dimensional subspace.

|ψi〉 hit! Rejection successful, return to step 2.
|ψi〉 missed! Rejection failed, stop the algorithm.

The Quantum Metropolis Algorithm
... the implementation

Quantum Metropolis Algorithm (3/3)

5 Being in state |φ⊥Q〉 we iterate the P Q‖ measurements in a
two dimensional subspace.

|ψi〉 hit! Rejection successful, return to step 2.
|ψi〉 missed! Rejection failed, stop the algorithm.

Sources

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth,
Augusta H. Teller, and Edward Teller. Equation of state calculations by
fast computing machines. Journal of Chemical Physics,
21(6):1087–1092, 1953.
M. E. J. Newman and G. T. Barkema. Monte Carlo Methods in
Statistical Physics. Oxford University Press, 1999.
http://en.wikipedia.org/wiki/Quantum_computer

K. Temme, T. J. Osborne, K. G. Vollbrecht, D. Poulin, F. Verstraete.
Quantum Metropolis Sampling. arXiv:0911.3635v2 [quant-ph],
October 2010
D. Poulin. Quantum Metropolis Sampling: An algorithm to simulate
thermal systems with a quantum computer. Presentation at the
Perimeter Institute for Theoretical Physics, March 2010.
http://www.physique.usherbrooke.ca/~dpoulin/Documents/PI2010.pdf

http://en.wikipedia.org/wiki/Quantum_computer
http://www.physique.usherbrooke.ca/~dpoulin/Documents/PI2010.pdf

Thank you for your attention!

	The Classical Metropolis Algorithm
	... its origins
	... a very quick derivation
	... an example: 2d Ising-Model

	The Basics of Quantum Computing
	... bits and qubits
	... registers and quantum registers

	The Quantum Metropolis Algorithm
	... what is it?
	... the implementation

